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Abstract

Temperature and pressure fields generated by the collapsing bubble of microsize in liquid under ultrasound are estimated by a set of solutions
of the Navier—Stokes equations for the gas inside bubble with considering heat transfer through the bubble wall. The calculation results for the
peak temperature and pressure were compared to the observed ones from a sonoluminescing bubble which can be levitated in a spherical cell
under ultrasound frequency range of 10—40 kHz. The calculation results are in good agreement with observed ones. However, the Rayleigh—Plesset
equation with polytropic relation, a conventional method yields considerably underestimated values in temperature and overestimated ones in
pressure. The bubble dynamics model presented in this study may be used as a tool for the design of sonochemical reactor where the peak
temperature and pressure and the pressure field due to the bubble collape are important parameters.
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1. Introduction

It is well known that high-power ultrasound at a frequency
range of 20kHz enhances the rate or various chemical reac-
tions [1,2] through the generation and subsequent growth and
collapse of microsize bubbles which provide hot spot region of
high temperature and pressure in the liquid layer adjacent to
bubble [3]. In fact, degradation of organic compounds in aque-
ous solutions [4,5] and synthesis of new materials with better
yields and/or shorter times through the acoustic cavitation [6,7]
at the frequency of 20 kHz were reported. At the multibubble
sonoluminescence (MBSL) condition achieved in cylindrical
cell at an ultrasound frequency of 20 kHz and a power input of
165 W, methylene blue (MB) was degraded completely [8]. Even
uniform coating of CdS particles on TiO» nanoparticles was suc-
ceeded through a one pot reaction under the MBSL condition [9].

Recently, optimum design for better processing of various
chemical reactors [10,11] and scale-up sonochemical reactor for
industrial applications [12] were studied. As a design tool, usu-
ally the Rayleigh—Plesset equation for the bubble wall motion
and the polytropic relation for the gas behavior inside the bubble
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under ultrasound have been employed. The cavitation intensities
represented by the peak temperature and pressure achieved at the
collapse of microbubble, which are very important parameters
for the sonochemical reactor design can be predicted hardly by
the polytropic relation. In fact, the polytropic relation conjunc-
tion with the Rayleigh—Plesset equation provides considerable
overestimation of the peak pressure and underestimation of the
peak temperature for a sonoluminescing gas bubble [13] in sulfu-
ric acid solutions [14,15]. Further the polytropic approximation
fails to account for the thermal damping effect due to finite heat
transfer through the bubble wall during bubble evolution because
Py, dV is perfect differential [16]. Another serious question on
the use of the polytropic approximation is that it is very hard to
tell whether the gas inside the bubble under ultrasound behaves
isothermally or adiabatically [17,18].

A rather homogeneous bubble size distribution with an aver-
age diameter of 10 wm was obtained in a sonochemical reactor
at a driving frequency of 20 kHz with an input power of 179 W
by using the phase-Doppler technique [19]. This observation
suggests that individual behavior of the bubbles with this size
range should be studied for the design of sonochemical reactors.
However, for the bubble whose radius is less than 10 pm, relax-
ation behavior of bubble with respect to the driving ultrasound
was obtained [20-22], which should be taken into account in the
study of bubble dynamics.
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Nomenclature

Cgp sound speed at the bubble wall

Cop heat capacity of gas at constant pressure
Cup heat capacity of gas at constant volume
e internal energy per mass

fa frequency of ultrasound

kg conductivity of gas

k conductivity of liquid

n polytropic index

Pa driving ultrasound amplitude

Py pressure inside bubble

Pro pressure at the bubble center

Py driving ultrasound pressure

Pe Péclet number

qr heat flux inside bubble

r radius from the bubble center

Ry radius of bubble
Ry bubble wall velocity

Ry equilibrium radius of bubble

t time

Ty temperature of gas inside bubble

Tu temperature at the bubble—liquid interface
Tvo temperature at the bubble center

Ug gas velocity inside bubble

Uy bubble wall velocity

Greek letters

o thermal diffusivity of liquid

y specific heat ratio of gas

r polytropic index

8 thermal boundary layer thickness
S momentum boundary layer thickness
7 dynamic viscosity of liquid

Pg gas density inside bubble

Or radially dependent gas density
00 gas density at the bubble center
Poo density of liquid medium

o interfacial tension

w angular frequency of ultrasound
Subscripts

b bubble

0 center

00 ambient liquid medium

Since a levitation technique of a single bubble in a cylindri-
cal cell by ultrasound has been developed [23], various exotic
phenomena related to the single sonoluminescing bubble in a
spherical or cylindrical cell have been unveiled [24,25]. The cal-
culation results were compared to the observed ones from the
single sonoluminescing bubble in various spherical cells under
ultrasound frequency range of 10—45kHz. It is noted that the
equilibrium size of the bubble levitation spherical cell is deter-
mined by the cell size, ultrasound frequency, gas species inside
the bubble and host liquid.

In this study, the behavior of an individual bubble with micro-
size under ultrasound was studied by using a set of solutions of
the Navier—Stokes equations for the gas inside bubble by consid-
ering heat transfer with a parabolic temperature distribution for
the liquid layer adjacent to the bubble wall. The lagging behavior
of microsize bubble with respect to the applied ultrasound was
also considered. The calculation results of bubble radius—time
curve, and the peak temperature and pressure were compared
to the observed ones and the calculated ones by the polytropic
approximation and direct numerical simulation and a discussion
on the obtained results was made.

2. Bubble dynamics
2.1. Hydrodynamic solutions for the gas inside bubble

The hydrodynamics related to the bubble behavior in liquid
under ultrasound involves solving the Navier—Stokes equations
for the gas inside bubble and the liquid adjacent to the bubble
wall. The mass conservation for the gas inside the bubble with
spherical symmetry is given as

e, — 7 2y
+ 5 (peugr’) = 0 (M

With decomposition of the gas density into center and radial-
dependent parts such as [18]:

pg = po(t) + pi(r, 1) 2

the continuity equation becomes

apo 10 2 dr 10 2
- - —+ 5= =0 3
{ ot +'00r2 8r(ugr )|+ ot + r2 ar(prugr ) )

Since the rate of change of the density of a material particle
can be represented by the rate of volume expansion of the particle
in the limit V— 0 [26], or

- . (Vv 3Ry
v = (5) = & @

the radial-dependent velocity profile inside the bubble may be

written as
3Ry

Ug = —F
g Rb

&)

With this velocity profile, a set of solutions for the mass
conservation equation may be obtained. These are

poRg = const. (6)
and

ar?
Pr= ng 7

The constant a is related to the gas mass inside a bubble by
alm=5(1 — Ngc)/4m with Npc = (Poo R}/ Too)/(PL R3/ Too),
where P, = Poo + 20/ Ry.
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The momentum conservation for the gas with spherical sym-
metry is given as
0 1 Py
&(Pgug) + (pgu ) +—=0 3
The gas pressure inside the bubble Py, can be obtained from

the momentum equation with the density and velocity profiles
given in Egs. (2) and (5), respectively [27]. Or

1 1 Ry 2
Py = Py — 3 (po + 2Pr> Ry’ ©))

The linear velocity profile showing the spatial inhomo-
geneities inside the bubble is a crucial ansatz for the homologous
motion of a spherical object, which is encountered in another
energy focusing mechanism of gravitational collapse [28]. The
quadratic pressure profile given in Eq. (9), was verified recently
by comparisons with direct numerical simulations [29]. Itis also
noted the uniform temperature that distribution is achieved when
the bubble oscillation period is much shorter than the character-
istic time of the heat diffusion, 4 = R% /ag [17] and the uniform
pressure inside the bubble can be achieved if the bubble wall
acceleration is less than 10'2 m/s2 [30].

Assuming that the internal energy for the gas inside abubble is
a function of gas temperature only as de = C,, , dTy,, the energy
equation for the gas inside the bubble may be written as

DTy P, d

PeCuv = g

The viscous dissipation term in the internal energy equation
also vanishes because of the linear velocity profile. Since the
solutions given in Egs. (2), (5) and (9) also satisfy the kinetic
energy equation, only the internal energy equation given in Eq.
(10a) needs to be solved. Wu and Robert [31] and Moss et al. [32]
tried to solve numerically the total energy equation without the
heat transfer term along with the mass and momentum equations
given in Eqgs. (1) and (8), respectively. However, their calcula-
tion without considering the heat transfer inside the bubble and
in the liquid layer at the bubble wall considerably overestimated
the gas temperature in the bubble [32]. On the other hand, Pros-
peretti et al. solved the internal energy equation combined with
the mass and momentum equation numerically to consider heat
transport inside the bubble. However, heat transfer through the
liquid layer, which is very important to obtain the temperature at
the bubble wall was not considered in their study. While Yasui
[33] considered only heat transfer through the liquid layer with a
simple assumption for the boundary layer. It is also noted that it
is very hard to obtain a temperature distribution from the energy
equation, Eq. (10a) because C, p is a nonlinear function of tem-
perature when the vibration motion of molecules become active
and dissociation and ionization occur at high temperature, which
should be considered for investigating the radiation mechanism
of sonoluminescence [34].

Using the definition of enthalpy, the internal energy equation
for the gas can be also written as

DTy _ DP,
Dt Dt

ug) — = (V qr) (102)

10 ,
PgCpb— 35, ) (10b)

Eliminating D/Dt (=0/0t+ug0/0r)Ty, from Egs. (10a) and
(10b), one can obtained the following heat transport equation
for the gas pressure inside bubble [18,27]:

DR,  yPR 0

10
o =25 g qr) (11)

With help of the solutions given in Egs. (2), (5) and (9), Eq.
(11) becomes

)/—13 2 deo Rb 1 1
—_ = | = 4y 3yp Z Z
) ar(" qr) {dt + rPog t5 ot 5o
RR R
Gy — b b2 (12)
b Rb

Since the temperature rise due to the bubble wall acceleration
is a transient phenomenon occurred during few nanoseconds, the
above equation may be decomposed into

vr—19 B U Ry (13a)
— — a
r2 dr 4 bORb
and
y—1
2(gr — q0)]
1 1 RbRb R
= (m+=o) |Gr=1 == (13b)
2 2 b Rb

A temperature profile without the bubble wall acceleration
can be obtained by solving Eq. (13a) with the Fourier law. That
is [18]:

T()_——B 1+ 1+—AT ’ 2 —A(T 7o) — ’
- _ _ _
b A B T ibl = foo Ry

(14)

where A and B are the coefficients in the temperature-dependent
gas conductivity having a form such as ky=AT+B and
n=(Rp/8)(ki/B). For xenon A=1.031 x 107> J/msK? and B=
3.916 x 1073 J/msK and for argon A=2.685 x 107> J/ms K>
and B=1.347 x 1073 J/ms K were used [35]. The temperature
distribution given in Eq. (14) is valid until the characteristics
time of the bubble evolution is on the order of the relaxation
time for the vibrational motion of the molecules [18] and/or is
much less than the relaxation time of the translational motion of
the molecules [36].

Abrupt temperature rise and subsequent rapid quenching due
to the bubble wall acceleration and the increase and decrease
in the acceleration may be treated in another time scale [37],
different from the bubble motion. A solution of Eq. (13b) with
no temperature gradient at the bubble center is given as

1 5
) =——— =
b(") 00— DK, <,00 + 5 pr>

Ry Rb Rb
R2 Rb

[(31/ 2) t 4+ C) 5)
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The coefficient C may be determined from a boundary
condition ké dTy/dr = kdTy/dr at the wall where T} is the
temperature distribution in the thermal boundary layer with a
different thickness of §'. That is,

1 L
C=—— |3y —2)RyRoRy + Ry R?
20()/_1){()/ )Ry Ry Ry, + bb}
& n 5 n Ry n 5
X |— — Op— —_— — Op—
kl pO 14 /Or—Rb zké /00 21 IOr_Rb

(16)

The gas conductivity at ultra-high temperatures may be
obtained from the collision integrals [38]. The value of 8’ may be
chosen so that proper bouncing motion results after the collapse
andis about 0.1 pm. The final solution of the heat transport equa-
tion can be represented by the superposition of the temperature
distributions caused by the uniform pressure and by the radial
pressure variation induced by the rapid change of the bubble
wall acceleration, as can be seen in Eq. (9); that is,

T(r) = To(r) + Ty(r) 7)

2.2. Governing equations from the Navier—Stokes
equations for the liquid adjacent to the bubble wall

The mass and momentum equation for the liquid outside the
bubble wall provides the well-known equation of motion for the
bubble wall [39], which is valid until the bubble wall velocity
does not exceed the sound speed of the liquid. That is,

Upy\dUy, 3 , Uy
Re(1-22) =22 4202 (1- =
b( CB) a T2 3Cp

1 Us Ryd R

=<1+b+b> {PB—PS(HC*’)—POO}
B

(18)

The liquid pressure on the external side of the bubble wall
Pgp is related to the pressure inside the bubble wall Py by
Pp =Py, — 20/Ry, — 41 Up/Ry,. The pressure of the driving sound
field P may be represented by a sinusoidal function such as
Py =—Py sin wt where o =27fy.

The temperature distribution in the liquid layer adjacent to
the bubble wall, which is important to determine the heat transfer
through the bubble wall is assumed to be quadratic [40], such as

T—-Tx 2
=09 (19)
where & =(r — Rp)/6. Such second-order curve satisfies the fol-
lowing boundary conditions.

T(Ryp, 1) = Ty,

oT
and <> =0 (20)
or r=Rp+35

The mass and energy equation for the liquid layer adjacent
to the bubble wall with the temperature distribution given in
Eq. (14) provides a time-dependent first-order equation for the

T(Ry +6,1) =T

thermal boundary layer thickness [18]. It is given by

1+3+3 §\?| ds
Ry 10 \ Ry dt
25+1 5 \?
Ry 2\ Rp
1+18+1 5 \?2 1 dTy o
2 Ry 10\ Ry Ty — Too dt

Such integral method, which can be classified as one mem-
ber of weighted residual methods, is particularly well suited
to the problem where the time-dependent variable Ty, (7) on the
bubble wall is time-dependent. With thin boundary layer approx-
imation, §/R, < 1 and with fixed value of the wall superheat,
Ty — Tso, Eq. (21) provides a well known thermal boundary
layer thickness of order of (ar)!”> and asymptotic limit of bub-
ble growth due to heat diffusion [41]. In fact, the heat transfer
associated with the oscillatory motion of the bubble is negligibly
small. The above equation determines the heat flow rate through
the bubble wall. Instantaneous bubble radius, bubble wall veloc-
ity and acceleration and the thermal boundary thickness obtained
from Egs. (18) and (21) provide density, velocity, pressure and
temperature profiles for the gas inside the bubble without any
further assumptions. No adjusted parameter is needed for cal-
culation. The gas temperature and pressure at the bubble center
can be obtained from the ideal gas law ,00R133 = const., one of
the solutions for the continuity equation given in Eq. (1).

The momentum boundary layer thickness 8, associated with
the pressure gradient may be obtained by integrating the momen-
tum equation for the liquid layer adjacent to the bubble wall with
assumption of an incompressible fluid. An equation to obtain the
thickness of the momentum boundary layer, which was used to
predict the barodiffusion, a mass flow due to the pressure dif-
ference between the gas pressure inside the bubble and ambient
pressure [42], is given by

Py, — P
Poo R%

dRy
dr

IRE (p+ @32+ (1/203) o,
1+ap 1+ 3ap + 302 + o R2
(22)

where o) = 6p/Ryp. The bubble dynamics model presented above
permits to predict correctly the bubble radius—time curve and
the bubble wall velocity at the collapse point [20].

2.3. Prosperetti et al.’s formulation
Assuming that the internal pressure is uniform and the gas
behaves like ideal gas, Prosperetti et al. [16] obtained the fol-

lowing equation by using Eqgs. (1) and (10):

1 dP
Voig=— [(y = DV - (ksVT}) — —2 (23)
£ vPg & dr
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The above equation is just Eq. (11) for the case of uniform
pressure. An integration of Eq. (23) over the volume of the
bubble leads to the velocity profile inside the bubble such as

0= — | e 1, 4P 4)
ug(r,t) = — - —_— = —r—
: P [V e T3

The time-dependent gas pressure inside the bubble can be
obtained from the above equation by evaluating it at = Ry,. That
18,

de_ 3

?_Rb

Ty

(¥ — Dkg (8}”) — P Uy (25)
r=Ryp

The internal energy given in Eq. (10b) for the case of uniform
pressure can be rewritten with ideal gas law, P, = poRTy, where

R is gas constant, such as
dP, 1 0 oTh
- = <r2kgb> (26)

y Py [(0Ty 0Ty
Y N (%% b -9
y—1Ty \ or & or dt ~ r2or ar

Egs. (24)—(26) replace the mass, momentum and energy con-
servation, respectively. The distributions for the gas velocity and
temperature inside the bubble can be obtained by solving Egs.
(24)—(26) simultaneously at a given time with proper numeri-
cal method [43]. In their study, the temperature distribution in
the liquid adjacent to the bubble wall is assumed to be negligi-
ble so that the interface temperature is maintained to be equal
to ambient one. Considerable computation time, however, is
needed to obtain reasonable results with this formulation when
the characteristic time of bubble evolution is nanosecond range
or below.

The temperature distribution for the gas inside bubble with
the boundary condition which Prosperetti et al. [16] have chosen
can also be obtained by solving Eq. (13a) with help of the set of
solutions of the Navier—Stokes equation for the gas inside the
bubble. That is,

isothermal and uniform behavior of the gas inside bubble is not
adequate to estimate the gas temperature inside the bubble. For
calculating the temperature, they employ the following relation
to obtain the polytropic exponent, n which depends on Péclet
number:

B
n=1+(y—1)exp {_PeA} (29)

where y is the specific heat ratio and the numerical values of A
and B are 5.8 and 0.6, respectively. The time-dependent, instan-
taneous Péclet number for the oscillating bubble is given by

. Ry
Pe = |Ry| > (30)

Ug
Unphysical picture of their model with variable polytropic
index exists around the bubble collapse: the polytropic index
becomes unity at R, = 0 at the collapse point where adiabatic
process is dominant. It is better to use the polytropic index of n,
which is related to the thermal diffusivity of the gas and liquid
and driving sound frequency [46] to obtain gas temperature by

using the following equation:

Tb RS . h3 n—1
Too  \ R — i3 Gb
o0 b
For air bubble under ultrasound frequency of 16—1000 kHz
range, the polytropic index needed to calculated the temperature
is about 1.3. Note that the uniform temperature obtained from
Eq. (31) is valid when thermal equilibrium prevails inside bub-
ble. The assumption of uniform temperature is good one when
the characteristic time of bubble evolution is millisecond range
[18].
A summary of this section is as follows. A set of solutions
for the mass, momentum and energy equations of the gas inside

B A 2 A 2 /A 2 r\?2
Tb(’”)ZX -1+ (BTb0+1) - (BTbO+1> _<BToo+1> (Rb) 27

As is well known, the above temperature distribution indicates
the case of maximum heat transfer through the bubble wall
regardless of the thermal properties of liquid.

2.4. Other approximations

For the calculation of the gas pressure inside bubble Hilgen-
feldt et al. [44] employed the following van der Waals equation
with polytropic exponent of I

20\ [ Ry —h? "
Po= (P — 28
where h=Ry/8.5 is the hard-core van der Waals radius for air
and the polytropic index I is taken to be unity, which is called
by “process equation” by theirs. However, the polytropic index

value of unity has not been used to obtain the gas pressure inside
the bubble usually [45]. Certainly, Eq. (28) which assumed the

the oscillating bubble under ultrasound are introduced. Also the
equations for the bubble motion and the thermal boundary layer
thickness, which can be obtained from the mass, momentum
and energy equations for the liquid outside the bubble wall are
introduced to obtain instantaneous density, pressure and temper-
ature profiles for the bubble. Another methods to obtain these
parameters are also presented.

3. A numerical integration of equation for bubble wall
motion

Usually, Eq. (18) the Keller-Miksis (KM) equation cannot
be integrated numerically, without normalization by appropri-
ate physical variables. The radius is compared to the equilibrium
radius Ry, and the velocity and pressure are related to constants,
ug = (Poo/,ooo)”2 and Py =P, respectively. The constants for
normalizing other physical quantities such as time, dynamic
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viscosity and surface tension of liquid were obtained from the
condition that the KM equation becomes homogeneous after the
normalization procedure [18,27]. They are given as

Time: to = Ro/ug

Thermal conductivity: ko = PootgRo/Tso
Thermal diffusivity: o9 =uoRo
Dynamic viscosity: o =PsoRo/ug
Surface tension: o9 = PRy

The governing equation is normalized by the time scale of
to = Ro/ug, the characteristic time of the bubble motion. Also the
time ¢ and the driving frequency fy in the sinusoidal term in Eq.
(18) may be normalized by #y and 1/, respectively [47,48] so
that the nondimensional form of the sinusoidal term becomes
cos(2nft) where f=fyto is the nondimensional frequency. This
may be called as single-time scale normalization (STN) method.
However, the STN method yields a bubble behavior moving in
phase with the driving ultrasound, which might cause an artifi-
cial resonance for bubbles with equilibrium radius of microsize
[20,21]. The reduction in the nondimensional frequency in the
sinusoidal term with STN yields quite different results for bub-
ble motion in numerical evaluation. For example, the expansion
ratio calculated by the Rayleigh—Plesset (RP) equation with
STN is as much as 17.2 while the observed value is about 9.76
for an air bubble of Ry=5.0 pum driven at f3=12.926 kHz and
Pa =1.33 atm [21]. The bubble radius—time curves obtained by
the modified Rayleigh—Plesset (RP) equation [49] or KM equa-
tion with consideration of the relaxation time were found to
be virtually same except the bouncing behavior [18], which
suggests that the relaxational motion of the bubble against the
applied ultrasound is very important in the bubble behavior of
microsize.

In general, the characteristic frequency of the driving force
fo differs from the natural frequency of bubble oscillation 1/.
The time t and the driving frequency fg in the sinusoidal term in
Eq. (18) may be normalized by 1/fy and fj, respectively so that
the sinusoidal term remains in the same form as cos(27ft) but
with different nondimensional frequency f=f3/fo. Because the
bubble wall motion described by Eq. (18) is also normalized by
to with this normalization method, but the nondimensional time
is recovered by 1/fy in the numerical procedure (which may be
called as two-time scale normalization (TTN) method), there is
a lag time of the bubble motion with respect to the characteristic
time of the applied ultrasound fp, which is defined as [20]:

T ! 1 (32)
fo

The bubble behavior under ultrasound can be described cor-
rectly with the concept of such lag time [22], which is due to
the combined effect of the surface tension and viscosity of fluid
[49].

4. Calcuation results and discussion

The calculated radius—time curve along with observed
results by the light scattering method for a xenon bubble with

60

® Experimental results by Hopkins er al.
Present theory

E=nym—n Polytropic approximation 4

Radius [pm]

0 10 20 30 40 50 60
Time [us]

Fig. 1. Theoretical radius—time curve along with observed one by Hopkins et
al. [14] for xenon bubble of Ryp=15.0 um at Pp =1.50 atm and f; =37.8 kHz
in sulfuric acid solution. The thermodynamic properties employed for 85%
sulfuric acid solution are p=1800kg/m3, Cy=1470m/s, p=0.025N s/m?,
0=0.055N/m, k;=0.40 W/mK, and C,,; = 1817 J/kgK.

Rp=15pum, driven by the ultrasonic field with a frequency
37.8kHz and amplitude of 1.5atm in aqueous solution of
sulfuric acid is shown in Fig. 1. With xenon data for the thermal
conductivity, the calculated radius—time curve which mimics
the alternating pattern of the observed result shows two different
states of bubble motion. On the other hand, the Rayleigh—Plesset
equation with polytropic relation, a conventional method [47]
used to predict the sonoluminescence phenomena, cannot
predict the two states of bubble motion as shown in Fig. 1. It
is noted that a stable sonoluminescing bubble was levitated in
a spherical, 52 mm diameter (50 cm?® volume), quartz flask at
a ultrasound amplitude of 1.5 atm and frequency of 37.0 kHz,
which is a resonance of the flask by Troia et al. [50].

In Fig. 2, the calculated time rate changes of the gas tem-
perature at the bubble center for the bubble shown in Fig. 1 are

Present theory
10000 F~7 Calcula.ted 1.'esull by polytropic
: approximation

Bubble center temperature [K]

45.1408 ps
I

0 10 20 30 40 50 60

Time [ps]

Fig. 2. Calculated bubble center temperatures for the cases shown in Fig. 1.
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given. The calculation results by our method revealed that the
slow bubble expansion in response to the rarefaction phase of the
applied ultrasound undergoes almost isothermally while the sub-
sequent rapid bubble collapse proceeds nearly adiabatically. On
the other hand, considerably lower temperature as low as 100 K
is achieved at the point of the maximum bubble radius when the
bubble evolution was assumed to be proceeded by the polytropic
process with n=1.3. Our estimated value of the gas temperature
at the collapse point is about 8200 K at the bubble center with the
average value of 6000 K, which is close to the observed value of
6000-7000 K by spectrum data fitted to the blackbody radiation
[15]. However, the polytropic approximation provides consid-
erable underestimation of the gas temperature of 2300 K at the
collapse point.

Because P, dV is a perfect differential and the polytropic
relation is a point function so that the gas pressure and the tem-
perature estimated by the polytropic relation does not depend on
the process in which the bubble evolves. This is why a “process
equation” was proposed to estimate the gas pressure [44]. How-
ever, the process equation of PV =const. which was introduced
to estimate the gas pressure cannot account the thermal damping
due to finite heat transfer through the bubble wall.

Fig. 3 shows the temperature distribution inside the bubble
around the maximum expansion phase (a) and around the col-

(a) 310
. ""s-\
"~
————— 39.0212 ps ~.
) 300 40.0344 s ~.J
- | =—r—— 41.6667 ps
>
i
g
® 290 -
St
@
-9 /s
/s
: P
H
280 | R
re
7
///
270
0.0 0.2 0.4 0.6 0.8 1.0
r/Ryp
(b) 10000
8000
=)
2 6000
=
g
«<
b .
2 4000
g | -——- 45.1148 ps \\
= 45.1408 us \
2000 } ——— 45.1667 ps
\
0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
r/Rp

Fig. 3. Temperature distribution (a) near the maximum expansion point and (b)
near the collapse point for the bubble shown in Fig. 1.

106
Present theory
———— Calculated results by polytropic
approximation
104 ¢

i
|
|
|
102 + |
[

10° &

Bubble center pressure [atm]

102 | Beoagd

Time [ps]

Fig. 4. Calculated gas pressure depending on time for an argon bubble of
Ro=13.0 um at Pp =1.40 atm and f3 =28.5 kHz.

lapse one (b). As shown in Fig. 3a an inversion of the temperature
distribution occurs before and after the maximum expansion.
Before maximum expansion, the temperature at the bubble wall
is slightly higher than that at the center so that heat flow from lig-
uid to the bubble occurs. On the other hand, after the maximum
expansion point where thermal equilibrium prevails, heat flows
out to the liquid, which is drastically different from the results
obtained with the polytropic relation. Considerable temperature
gradient is built up at the collapse point so that large amount of
heat flows into the liquid as shown in Fig. 3b.

Fig. 4 shows the calculated time rate change of the gas pres-
sure for the argon bubble of Ry=13 um at P =1.4atm and
fa=28.5kHz in sulfuric acid solutions. Our calculated pressure
at the collapse point is about 1020 atm, which is close to the
observed value of 1090 atm by plasma diagnostics technique
[15]. However, considerable overestimation in the gas pressure
at the collapse point results with the polytropic relation. As can
be seen in Figs. 3 and 4, the calculated time rate change of the
gas temperature and pressure inside the bubble by ours are quite
different from those obtained by the Rayleigh—Plesset equation
with the polytropic relation. Same as the case of the bubbles
under ultrasound in sulfuric acid solutions, considerable over-
estimation in the gas pressure and underestimation in the gas
temperature are provided by the polytropic relation for an oscil-
lating bubble in water. The polytropic assumption for the bubble
behavior may be a good approximation for small-amplitude case
[46].

For a bubble whose equilibrium radius is less than 10 wm,
the lagging motion of the bubble with respect to the driv-
ing ultrasound should be considered as discussed in previous
section. Fig. 5 shows the calculated radius—time curve along
with observed one for an air bubble of Ry=28.5 wm, driven by
ultrasound with a frequency of 26.5kHz and an amplitude of
1.075 atm. Our radius—time curve was calculated with different
time scales for the bubble motion 7y given in Eq. (32) and for
the applied ultrasound 1/fy=107%s so that the retarded time of
the bubble motion with respect to the driving force 7 is about
0.15 ps. Close agreement between our calculated curve and the
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Fig. 5. Theoretical radius—time curve with relaxation time of 0.15 s along with
observed one for air bubble of Ry=28.5 pum at P, =1.075 atm and f3 =26.5 kHz
in water.

observed one [48] can be seen. However, the curve obtained
by the Rayleigh—Plesset equation with a polytropic relation of
PV!# =const. and without the legging time is quite different
from the observed one; the time elapsed from the start to the
first bubble collapse is about 16.5 s compared to the observed
value of 19.1 us and the number of bouncing is 10 rather the
observed number of 7 as shown in Fig. 6. Also the magnitude of
the maximum bubble radius at the first bounce is significantly
less than the observed one.

Fig. 7 shows the calculated bubble radius-time curves along
with observed one for an air bubble of Ry =5 wm under an ultra-
sound frequency of 12.926 kHz and amplitude of 1.33 atm [21].
As shown in Fig. 7, the curves obtained by Keller—Miksis or
modified Rayleigh—Plesset equation with a relaxation time of
0.396 s mimic correctly the observed behavior of bubble in
water. However, the maximum radius calculated without con-
sidering the relaxation time is about 1.8 times larger than the

30

Calculated results

25 - ®  Observed results

20 4

Radius [tm]
@*

0 10 20 30
Time [ps]

Fig. 6. Calculated radius—time curve obtained from the RP equation with poly-
tropic relation along with observed one for the case shown in this figure.
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Fig. 7. Radius—time curves from the RP equation without relaxation time (—)
and KMNS (---) with the relaxation time of 0.39 ws for an air bubble of
Ro=5.0 pm at Pp =1.33 atm and f3 = 12.926 kHz in water.

observed one. In consequence of this, the bubble wall veloc-
ity at the collapse point, which exceeds 2000 m/s, is much larger
than the observed value of 1400 m/s [51]. For reference purpose,
snapshot images of the oscillating bubble with accompanying
sonoluminescence for the case shown in Fig. 7 are shown in
Fig. 8. Clearly can be seen from the image near the collapse
point (65 ws), no evaporation of water at the bubble wall where
considerable high temperature above the critical temperature of
water is expected, occurs.

As shown in Fig. 9, the bubble wall acceleration near the
collapse point for the bubble shown in Fig. 7 exceeds 10'? m/s?
so that a thermal spike due to abrupt rise and subsequent decrease
in the bubble wall acceleration appears. The thermal spike which
lasts only fraction of nanosecond as shown in Fig. 9 generates
a light pulse due to Bremsstrahlung [27,30]. In this case, the
temperature distribution due to the bubble wall motion after the
flash and the corresponding heat flux inside bubble are show in
Fig. 10. The maximum temperature at the bubble center is about
28,000 K and the maximum heat flux at the bubble wall is as
much as 35 TW/m?2. Of course, these values become lower at a
high frequency of 30 kHz operation as shown in Figs. 11 and 12.
On the other hand the maximum temperature estimated by the
polytropic relation with n=1.3 is about 6700 K even though the
bubble radius at the collapse point is as small as 0.16 pm.

Fig. 11 shows the bubble radius—time curves obtained from
the direct numerical simulation (DNS) by Storey [52], poly-
tropic assumption, and our method, for aradius of 4.5 wm bubble
forced with a 1.3 atm pressure amplitude at 32.8 kHz. The cal-
culation results by DNS and our theory with =0, produced
similar radial oscillations including the boundary motion after
the collapse. On the other hand, polytropic assumption yields
quantitatively incorrect results because the thermal damping due
to the finite heat transfer across the bubble wall cannot be taken
into account.

Fig. 12a shows the time-dependent temperature and pressure
at the bubble wall around the collapse point and Fig. 12b shows
spatial temperature and pressure distributions in the liquid layer
adjacent to the bubble wall at the collapse point. As can be seen
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Fig. 8. Snapshot images of the oscillating bubble with SL shown in Fig. 2. A dark bar in the first frame is the image of gold wire of 25 um diameter (from reference

[21]).
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Fig. 9. Time-dependent center temperature and the bubble wall acceleration
near the collapse point for the bubble shown in Fig. 7.
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Fig. 10. Temperature distribution and heat flow rate per unit volume inside the
bubble at the collapse point for the case shown in Fig. 8.

from Fig. 12b, the pressure value at the point where the temper-
ature is 647 K, the critical temperature of water is much greater
than the critical pressure of water, 218 atm, so that the supercriti-
cal state of water is developed above T= 647 K. Below 647 K, the
pressure values are always greater than the saturation pressure
corresponding to the temperature so that no evaporation takes
place in the liquid layer. The estimated duration of supercritical
state of water from Fig. 12ais about 400 ps. In fact, Huaetal. [53]
noticed that high temperature and pressure exceeding the criti-
cal value of water at the interface during the bubble collapse and
estimated the lifetime and spatial extent of the supercritical state
by solving the transient conduction equation in the liquid layer.
Much higher reaction rate of the hydrolysis of p-nitrophenyl
acetate by several orders of magnitude in the presence of ultra-
sound was considered to be attributed to the existence of transient
supercritical state of water during the bubble collapse [54]. The
possibility of evaporation of liquid at the bubble wall is scarce
because the temperature at the interface remains the same as

40

DNS model
————— Polytropic assumption
Present theory

Radium [pm]

Time [ps]

Fig. 11. Bubble radius—time curves by a direct numerical simulation, polytropic
assumption and our analytical method for a 4.5 wm radius bubble driven at
Pp=13atm and f3=32.8 kHz.
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Fig. 12. (a) Time-dependent bubble wall temperature and pressure around the
collapse point. (b) Calculated temperature and pressure distribution in the liquid
layer adjacent to the bubble wall for the case shown in Fig. 11 at the collapse
point.

the ambient temperature as shown in Fig. 2 except the collapse
phase when the supercritical state of water is developed.

Finally, it is noted that the peak temperature and pressure
at the collapse point turned out to be not affected by the mass
transfer of gases through the bubble wall [55].

5. Conclusion

High temperature and pressure fields resulting from the col-
lapse of microsize bubbles in liquids under ultrasound, which
are responsible for the observed chemical and biological effects
of ultrasound have been estimated by a set of solutions of the
Navier—Stokes equations with consideration of heat transfer
through the bubble wall. The calculated results of the peak tem-
perature and pressure obtained by using our analytical model are
in good agreement with the observed ones from a single sono-
luminescing gas bubble which can be levitated in a cylindrical
or spherical cell at the frequency range from 10 to 40 kHz of
ultrasound. Our analytical model also produces correct radial
motion of bubble, which is in good agreement with the result by
direct numerical simulation, and the alternating pattern of bubble
motion showing on/off sonoluminescence due to heat transfer
across the interface in sulfuric acid solutions. In summary, our
model presented in this study is an unique analytical one which
can predict the behavior of the gas inside the evolving bubble.
So, the analytical model used may be employed to the design of
sonochemical reactors where the correct value of the parameters
related to the cavitation intensity is required.
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