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bstract

Temperature and pressure fields generated by the collapsing bubble of microsize in liquid under ultrasound are estimated by a set of solutions
f the Navier–Stokes equations for the gas inside bubble with considering heat transfer through the bubble wall. The calculation results for the
eak temperature and pressure were compared to the observed ones from a sonoluminescing bubble which can be levitated in a spherical cell
nder ultrasound frequency range of 10–40 kHz. The calculation results are in good agreement with observed ones. However, the Rayleigh–Plesset

quation with polytropic relation, a conventional method yields considerably underestimated values in temperature and overestimated ones in
ressure. The bubble dynamics model presented in this study may be used as a tool for the design of sonochemical reactor where the peak
emperature and pressure and the pressure field due to the bubble collape are important parameters.

2007 Elsevier B.V. All rights reserved.
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. Introduction

It is well known that high-power ultrasound at a frequency
ange of 20 kHz enhances the rate or various chemical reac-
ions [1,2] through the generation and subsequent growth and
ollapse of microsize bubbles which provide hot spot region of
igh temperature and pressure in the liquid layer adjacent to
ubble [3]. In fact, degradation of organic compounds in aque-
us solutions [4,5] and synthesis of new materials with better
ields and/or shorter times through the acoustic cavitation [6,7]
t the frequency of 20 kHz were reported. At the multibubble
onoluminescence (MBSL) condition achieved in cylindrical
ell at an ultrasound frequency of 20 kHz and a power input of
65 W, methylene blue (MB) was degraded completely [8]. Even
niform coating of CdS particles on TiO2 nanoparticles was suc-
eeded through a one pot reaction under the MBSL condition [9].

Recently, optimum design for better processing of various
hemical reactors [10,11] and scale-up sonochemical reactor for

ndustrial applications [12] were studied. As a design tool, usu-
lly the Rayleigh–Plesset equation for the bubble wall motion
nd the polytropic relation for the gas behavior inside the bubble
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ltrasound

nder ultrasound have been employed. The cavitation intensities
epresented by the peak temperature and pressure achieved at the
ollapse of microbubble, which are very important parameters
or the sonochemical reactor design can be predicted hardly by
he polytropic relation. In fact, the polytropic relation conjunc-
ion with the Rayleigh–Plesset equation provides considerable
verestimation of the peak pressure and underestimation of the
eak temperature for a sonoluminescing gas bubble [13] in sulfu-
ic acid solutions [14,15]. Further the polytropic approximation
ails to account for the thermal damping effect due to finite heat
ransfer through the bubble wall during bubble evolution because
b dV is perfect differential [16]. Another serious question on

he use of the polytropic approximation is that it is very hard to
ell whether the gas inside the bubble under ultrasound behaves
sothermally or adiabatically [17,18].

A rather homogeneous bubble size distribution with an aver-
ge diameter of 10 �m was obtained in a sonochemical reactor
t a driving frequency of 20 kHz with an input power of 179 W
y using the phase-Doppler technique [19]. This observation
uggests that individual behavior of the bubbles with this size
ange should be studied for the design of sonochemical reactors.

owever, for the bubble whose radius is less than 10 �m, relax-

tion behavior of bubble with respect to the driving ultrasound
as obtained [20–22], which should be taken into account in the

tudy of bubble dynamics.

mailto:kwakhy@cau.ac.kr
dx.doi.org/10.1016/j.cej.2007.01.037
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Nomenclature

CB sound speed at the bubble wall
Cp,b heat capacity of gas at constant pressure
Cv,b heat capacity of gas at constant volume
e internal energy per mass
fd frequency of ultrasound
kg conductivity of gas
kl conductivity of liquid
n polytropic index
PA driving ultrasound amplitude
Pb pressure inside bubble
Pb0 pressure at the bubble center
Ps driving ultrasound pressure
Pe Péclet number
qr heat flux inside bubble
r radius from the bubble center
Rb radius of bubble
Ṙb bubble wall velocity
R0 equilibrium radius of bubble
t time
Tb temperature of gas inside bubble
Tbl temperature at the bubble–liquid interface
Tb0 temperature at the bubble center
ug gas velocity inside bubble
Ub bubble wall velocity

Greek letters
α thermal diffusivity of liquid
γ specific heat ratio of gas
Γ polytropic index
δ thermal boundary layer thickness
δp momentum boundary layer thickness
μ dynamic viscosity of liquid
ρg gas density inside bubble
ρr radially dependent gas density
ρ0 gas density at the bubble center
ρ∞ density of liquid medium
σ interfacial tension
ω angular frequency of ultrasound

Subscripts
b bubble
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Since a levitation technique of a single bubble in a cylindri-
al cell by ultrasound has been developed [23], various exotic
henomena related to the single sonoluminescing bubble in a
pherical or cylindrical cell have been unveiled [24,25]. The cal-
ulation results were compared to the observed ones from the
ingle sonoluminescing bubble in various spherical cells under

ltrasound frequency range of 10–45 kHz. It is noted that the
quilibrium size of the bubble levitation spherical cell is deter-
ined by the cell size, ultrasound frequency, gas species inside

he bubble and host liquid.
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a
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In this study, the behavior of an individual bubble with micro-
ize under ultrasound was studied by using a set of solutions of
he Navier–Stokes equations for the gas inside bubble by consid-
ring heat transfer with a parabolic temperature distribution for
he liquid layer adjacent to the bubble wall. The lagging behavior
f microsize bubble with respect to the applied ultrasound was
lso considered. The calculation results of bubble radius–time
urve, and the peak temperature and pressure were compared
o the observed ones and the calculated ones by the polytropic
pproximation and direct numerical simulation and a discussion
n the obtained results was made.

. Bubble dynamics

.1. Hydrodynamic solutions for the gas inside bubble

The hydrodynamics related to the bubble behavior in liquid
nder ultrasound involves solving the Navier–Stokes equations
or the gas inside bubble and the liquid adjacent to the bubble
all. The mass conservation for the gas inside the bubble with

pherical symmetry is given as

∂ρg

∂t
+ 1

r2

∂

∂r
(ρgugr

2) = 0 (1)

With decomposition of the gas density into center and radial-
ependent parts such as [18]:

g = ρ0(t) + ρr(r, t) (2)

he continuity equation becomes

∂ρ0

∂t
+ ρ0

1

r2

∂

∂r
(ugr

2)

]
+
[
∂ρr

∂t
+ 1

r2

∂

∂r
(ρrugr

2)

]
= 0 (3)

Since the rate of change of the density of a material particle
an be represented by the rate of volume expansion of the particle
n the limit V → 0 [26], or

· �ug(r) = lim
V→0

(
V̇

V

)
= 3Ṙb

Rb
(4)

he radial-dependent velocity profile inside the bubble may be
ritten as

g = 3Ṙb

Rb
r (5)

With this velocity profile, a set of solutions for the mass
onservation equation may be obtained. These are

0R
3
b = const. (6)

nd

r = ar2

5 (7)

Rb

he constant a is related to the gas mass inside a bubble by
/m = 5(1 − NBC)/4π with NBC = (Pb0R

3
b/Tb0)/(P ′∞R3

0/T∞),
here P ′∞ = P∞ + 2σ/R0.
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The momentum conservation for the gas with spherical sym-
etry is given as

∂

∂t
(ρgug) + 1

r2

∂

∂r
(ρgu

2
gr

2) + ∂Pb

∂r
= 0 (8)

The gas pressure inside the bubble Pb can be obtained from
he momentum equation with the density and velocity profiles
iven in Eqs. (2) and (5), respectively [27]. Or

b = Pb0 − 1

2

(
ρ0 + 1

2
ρr

)
R̈b

Rb
r2 (9)

The linear velocity profile showing the spatial inhomo-
eneities inside the bubble is a crucial ansatz for the homologous
otion of a spherical object, which is encountered in another

nergy focusing mechanism of gravitational collapse [28]. The
uadratic pressure profile given in Eq. (9), was verified recently
y comparisons with direct numerical simulations [29]. It is also
oted the uniform temperature that distribution is achieved when
he bubble oscillation period is much shorter than the character-
stic time of the heat diffusion, td = R2

b/αg [17] and the uniform
ressure inside the bubble can be achieved if the bubble wall
cceleration is less than 1012 m/s2 [30].

Assuming that the internal energy for the gas inside a bubble is
function of gas temperature only as de = Cv,b dTb, the energy
quation for the gas inside the bubble may be written as

gCv,b
DTb

Dt
= −Pb

r2

d

dr
(r2ug) − 1

r2

d

dr
(r2qr) (10a)

The viscous dissipation term in the internal energy equation
lso vanishes because of the linear velocity profile. Since the
olutions given in Eqs. (2), (5) and (9) also satisfy the kinetic
nergy equation, only the internal energy equation given in Eq.
10a) needs to be solved. Wu and Robert [31] and Moss et al. [32]
ried to solve numerically the total energy equation without the
eat transfer term along with the mass and momentum equations
iven in Eqs. (1) and (8), respectively. However, their calcula-
ion without considering the heat transfer inside the bubble and
n the liquid layer at the bubble wall considerably overestimated
he gas temperature in the bubble [32]. On the other hand, Pros-
eretti et al. solved the internal energy equation combined with
he mass and momentum equation numerically to consider heat
ransport inside the bubble. However, heat transfer through the
iquid layer, which is very important to obtain the temperature at
he bubble wall was not considered in their study. While Yasui
33] considered only heat transfer through the liquid layer with a
imple assumption for the boundary layer. It is also noted that it
s very hard to obtain a temperature distribution from the energy
quation, Eq. (10a) because Cv,b is a nonlinear function of tem-
erature when the vibration motion of molecules become active
nd dissociation and ionization occur at high temperature, which
hould be considered for investigating the radiation mechanism
f sonoluminescence [34].
Using the definition of enthalpy, the internal energy equation
or the gas can be also written as

gCp,b
DTb

Dt
= DPb

Dt
− 1

r2

∂

∂r
(r2qr) (10b)
g Journal 132 (2007) 125–135 127

Eliminating D/Dt (=∂/∂t + ug∂/∂r)Tb from Eqs. (10a) and
10b), one can obtained the following heat transport equation
or the gas pressure inside bubble [18,27]:

DPb

Dt
= −γPb

r2

∂

∂r
(r2ug) − γ − 1

r2

∂

∂r
(r2qr) (11)

With help of the solutions given in Eqs. (2), (5) and (9), Eq.
11) becomes

γ − 1

r2

∂

∂r
(r2qr) = −

[
dPb0

dt
+ 3γPb0

Ṙb

Rb

]
+ 1

2

(
ρ0 + 1

2
ρr

)

×
[

(3γ − 1)
ṘbR̈b

R2
b

+
�Rb

Rb

]
r2 (12)

Since the temperature rise due to the bubble wall acceleration
s a transient phenomenon occurred during few nanoseconds, the
bove equation may be decomposed into

γ − 1

r2

∂

∂r
(r2q0) = −

[
dPb0

dt
+ 3γPb0

Ṙb

Rb

]
(13a)

nd

γ − 1

r2

∂

∂r
[r2(qr − q0)]

= 1

2

(
ρ0 + 1

2
ρr

)[
(3γ − 1)

ṘbR̈b

R2
b

+
�Rb

Rb

]
r2 (13b)

A temperature profile without the bubble wall acceleration
an be obtained by solving Eq. (13a) with the Fourier law. That
s [18]:

b(r)=B

A

⎡
⎣−1+

√(
1 + A

B
Tb0

)2

− 2η
A

B
(Tbl − T∞)

(
r

Rb

)2
⎤
⎦

(14)

here A and B are the coefficients in the temperature-dependent
as conductivity having a form such as kg = AT + B and
= (Rb/δ)(kl/B). For xenon A = 1.031 × 10−5 J/ms K2 and B =
.916 × 10−3 J/ms K and for argon A = 2.685 × 10−5 J/ms K2

nd B = 1.347 × 10−3 J/ms K were used [35]. The temperature
istribution given in Eq. (14) is valid until the characteristics
ime of the bubble evolution is on the order of the relaxation
ime for the vibrational motion of the molecules [18] and/or is
uch less than the relaxation time of the translational motion of

he molecules [36].
Abrupt temperature rise and subsequent rapid quenching due

o the bubble wall acceleration and the increase and decrease
n the acceleration may be treated in another time scale [37],
ifferent from the bubble motion. A solution of Eq. (13b) with
o temperature gradient at the bubble center is given as

′
b(r) = − 1

40 (γ − 1) k′
g

(
ρ0 + 5

21
ρr

)

×
[

(3γ − 2)
ṘbR̈b

R2
b

+
�Rb

Rb

]
r4 + C(t) (15)
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The coefficient C may be determined from a boundary
ondition k′

g dTb/dr = kl dTl/dr at the wall where Tl is the
emperature distribution in the thermal boundary layer with a
ifferent thickness of δ′. That is,

= 1

20(γ − 1)

[
(3γ − 2)ṘbR̈bRb + �RbR

2
b

]

×
[

δ′

kl

(
ρ0 + 5

14
ρr=Rb

)
+ Rb

2k′
g

(
ρ0 + 5

21
ρr=Rb

)]
(16)

The gas conductivity at ultra-high temperatures may be
btained from the collision integrals [38]. The value of δ′ may be
hosen so that proper bouncing motion results after the collapse
nd is about 0.1 �m. The final solution of the heat transport equa-
ion can be represented by the superposition of the temperature
istributions caused by the uniform pressure and by the radial
ressure variation induced by the rapid change of the bubble
all acceleration, as can be seen in Eq. (9); that is,

(r) = Tb(r) + T ′
b(r) (17)

.2. Governing equations from the Navier–Stokes
quations for the liquid adjacent to the bubble wall

The mass and momentum equation for the liquid outside the
ubble wall provides the well-known equation of motion for the
ubble wall [39], which is valid until the bubble wall velocity
oes not exceed the sound speed of the liquid. That is,

b

(
1 − Ub

CB

)
dUb

dt
+ 3

2
U2

b

(
1 − Ub

3CB

)

= 1

ρ∞

(
1 + Ub

CB
+ Rb

CB

d

dt

)[
PB − Ps

(
t + Rb

CB

)
− P∞

]
(18)

The liquid pressure on the external side of the bubble wall
B is related to the pressure inside the bubble wall Pb by
B = Pb − 2σ/Rb − 4μUb/Rb. The pressure of the driving sound
eld Ps may be represented by a sinusoidal function such as
s = −PA sin ωt where ω = 2πfd.

The temperature distribution in the liquid layer adjacent to
he bubble wall, which is important to determine the heat transfer
hrough the bubble wall is assumed to be quadratic [40], such as

T − T∞
Tbl − T∞

= (1 − ξ)2 (19)

here ξ = (r − Rb)/δ. Such second-order curve satisfies the fol-
owing boundary conditions.

(Rb, t) = Tbl, T (Rb + δ, t) = T∞

and

(
∂T

∂r

)
r=R +δ

= 0 (20)

b

The mass and energy equation for the liquid layer adjacent
o the bubble wall with the temperature distribution given in
q. (14) provides a time-dependent first-order equation for the

l

∇
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hermal boundary layer thickness [18]. It is given by

1 + δ

Rb
+ 3

10

(
δ

Rb

)2
]

dδ

dt

= 6α

δ
−
[

2
δ

Rb
+ 1

2

(
δ

Rb

)2
]

dRb

dt

− δ

[
1 + 1

2

δ

Rb
+ 1

10

(
δ

Rb

)2
]

1

Tbl − T∞
dTbl

dt
(21)

Such integral method, which can be classified as one mem-
er of weighted residual methods, is particularly well suited
o the problem where the time-dependent variable Tbl(t) on the
ubble wall is time-dependent. With thin boundary layer approx-
mation, δ/Rb � 1 and with fixed value of the wall superheat,
bl − T∞, Eq. (21) provides a well known thermal boundary

ayer thickness of order of (αt)1/2 and asymptotic limit of bub-
le growth due to heat diffusion [41]. In fact, the heat transfer
ssociated with the oscillatory motion of the bubble is negligibly
mall. The above equation determines the heat flow rate through
he bubble wall. Instantaneous bubble radius, bubble wall veloc-
ty and acceleration and the thermal boundary thickness obtained
rom Eqs. (18) and (21) provide density, velocity, pressure and
emperature profiles for the gas inside the bubble without any
urther assumptions. No adjusted parameter is needed for cal-
ulation. The gas temperature and pressure at the bubble center
an be obtained from the ideal gas law ρ0R

3
b = const., one of

he solutions for the continuity equation given in Eq. (1).
The momentum boundary layer thickness δp, associated with

he pressure gradient may be obtained by integrating the momen-
um equation for the liquid layer adjacent to the bubble wall with
ssumption of an incompressible fluid. An equation to obtain the
hickness of the momentum boundary layer, which was used to
redict the barodiffusion, a mass flow due to the pressure dif-
erence between the gas pressure inside the bubble and ambient
ressure [42], is given by

Pb − P∞
ρ∞Ṙ2

b

= − αp

1 + αp

⎡
⎣3
(
αp + (4/3)α2

p + (1/2)α3
p

)
1 + 3αp + 3α2

p + α3
p

+ RbR̈b

Ṙ2
b

⎤
⎦

(22)

here αp = δp/Rb. The bubble dynamics model presented above
ermits to predict correctly the bubble radius–time curve and
he bubble wall velocity at the collapse point [20].

.3. Prosperetti et al.’s formulation

Assuming that the internal pressure is uniform and the gas
ehaves like ideal gas, Prosperetti et al. [16] obtained the fol-

owing equation by using Eqs. (1) and (10):

· ug = 1

γPg

[
(γ − 1)∇ · (kg∇Tb) − dPg

dt

]
(23)
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The above equation is just Eq. (11) for the case of uniform
ressure. An integration of Eq. (23) over the volume of the
ubble leads to the velocity profile inside the bubble such as

g(r, t) = 1

γPg

[
(γ − 1)kg

∂Tb

∂r
− 1

3
r

dPg

dt

]
(24)

The time-dependent gas pressure inside the bubble can be
btained from the above equation by evaluating it at r = Rb. That
s,

dPb

dt
= 3

Rb

[
(γ − 1)kg

(
∂Tb

∂r

)
r=Rb

− γPbUb

]
(25)

The internal energy given in Eq. (10b) for the case of uniform
ressure can be rewritten with ideal gas law, Pb = ρgRTb where
is gas constant, such as

γ

γ − 1

Pb

Tb

(
∂Tb

∂t
+ ug

∂Tb

∂r

)
− dPb

dt
= 1

r2

∂

∂r

(
r2kg

∂Tb

∂r

)
(26)

Eqs. (24)–(26) replace the mass, momentum and energy con-
ervation, respectively. The distributions for the gas velocity and
emperature inside the bubble can be obtained by solving Eqs.
24)–(26) simultaneously at a given time with proper numeri-
al method [43]. In their study, the temperature distribution in
he liquid adjacent to the bubble wall is assumed to be negligi-
le so that the interface temperature is maintained to be equal
o ambient one. Considerable computation time, however, is
eeded to obtain reasonable results with this formulation when
he characteristic time of bubble evolution is nanosecond range
r below.

The temperature distribution for the gas inside bubble with
he boundary condition which Prosperetti et al. [16] have chosen
an also be obtained by solving Eq. (13a) with help of the set of
olutions of the Navier–Stokes equation for the gas inside the
ubble. That is,

b(r) = B

A

⎡
⎣−1 +

√√√√(A

B
Tb0 + 1

)2

−
{(

A

B
Tb0 + 1

)2

−
(

A

B

s is well known, the above temperature distribution indicates
he case of maximum heat transfer through the bubble wall
egardless of the thermal properties of liquid.

.4. Other approximations

For the calculation of the gas pressure inside bubble Hilgen-
eldt et al. [44] employed the following van der Waals equation
ith polytropic exponent of Γ :

b =
(

P∞ + 2σ

Rb

)(
R3

0 − h3

R3
b − h3

)Γ

(28)

here h = R0/8.5 is the hard-core van der Waals radius for air

nd the polytropic index Γ is taken to be unity, which is called
y “process equation” by theirs. However, the polytropic index
alue of unity has not been used to obtain the gas pressure inside
he bubble usually [45]. Certainly, Eq. (28) which assumed the

a
r
u
n
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+ 1

)2
}(

r

Rb

)2
⎤
⎦ (27)

sothermal and uniform behavior of the gas inside bubble is not
dequate to estimate the gas temperature inside the bubble. For
alculating the temperature, they employ the following relation
o obtain the polytropic exponent, n which depends on Péclet
umber:

= 1 + (γ − 1) exp

[
− B

PeA

]
(29)

here γ is the specific heat ratio and the numerical values of A
nd B are 5.8 and 0.6, respectively. The time-dependent, instan-
aneous Péclet number for the oscillating bubble is given by

e = |Ṙb|Rb

αg
(30)

Unphysical picture of their model with variable polytropic
ndex exists around the bubble collapse: the polytropic index
ecomes unity at Ṙb = 0 at the collapse point where adiabatic
rocess is dominant. It is better to use the polytropic index of n,
hich is related to the thermal diffusivity of the gas and liquid

nd driving sound frequency [46] to obtain gas temperature by
sing the following equation:

Tb

T∞
=
(

R3
0 − h3

R3
b − h3

)n−1

(31)

For air bubble under ultrasound frequency of 16–1000 kHz
ange, the polytropic index needed to calculated the temperature
s about 1.3. Note that the uniform temperature obtained from
q. (31) is valid when thermal equilibrium prevails inside bub-
le. The assumption of uniform temperature is good one when
he characteristic time of bubble evolution is millisecond range
18].

A summary of this section is as follows. A set of solutions
or the mass, momentum and energy equations of the gas inside

he oscillating bubble under ultrasound are introduced. Also the
quations for the bubble motion and the thermal boundary layer
hickness, which can be obtained from the mass, momentum
nd energy equations for the liquid outside the bubble wall are
ntroduced to obtain instantaneous density, pressure and temper-
ture profiles for the bubble. Another methods to obtain these
arameters are also presented.

. A numerical integration of equation for bubble wall
otion

Usually, Eq. (18) the Keller–Miksis (KM) equation cannot
e integrated numerically, without normalization by appropri-

te physical variables. The radius is compared to the equilibrium
adius R0, and the velocity and pressure are related to constants,
0 = (P∞/ρ∞)1/2 and P0 = P∞, respectively. The constants for
ormalizing other physical quantities such as time, dynamic
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which is a resonance of the flask by Troia et al. [50].

In Fig. 2, the calculated time rate changes of the gas tem-
perature at the bubble center for the bubble shown in Fig. 1 are
30 K.Y. Kim et al. / Chemical Engin

iscosity and surface tension of liquid were obtained from the
ondition that the KM equation becomes homogeneous after the
ormalization procedure [18,27]. They are given as

Time: t0 = R0/u0
Thermal conductivity: k0 = P∞u0R0/T∞
Thermal diffusivity: α0 = u0R0
Dynamic viscosity: μ0 = P∞R0/u0
Surface tension: σ0 = P∞R0

The governing equation is normalized by the time scale of
0 = R0/u0, the characteristic time of the bubble motion. Also the
ime t and the driving frequency fd in the sinusoidal term in Eq.
18) may be normalized by t0 and 1/t0, respectively [47,48] so
hat the nondimensional form of the sinusoidal term becomes
os(2πft) where f = fdt0 is the nondimensional frequency. This
ay be called as single-time scale normalization (STN) method.
owever, the STN method yields a bubble behavior moving in
hase with the driving ultrasound, which might cause an artifi-
ial resonance for bubbles with equilibrium radius of microsize
20,21]. The reduction in the nondimensional frequency in the
inusoidal term with STN yields quite different results for bub-
le motion in numerical evaluation. For example, the expansion
atio calculated by the Rayleigh–Plesset (RP) equation with
TN is as much as 17.2 while the observed value is about 9.76
or an air bubble of R0 = 5.0 �m driven at fd = 12.926 kHz and
A = 1.33 atm [21]. The bubble radius–time curves obtained by

he modified Rayleigh–Plesset (RP) equation [49] or KM equa-
ion with consideration of the relaxation time were found to
e virtually same except the bouncing behavior [18], which
uggests that the relaxational motion of the bubble against the
pplied ultrasound is very important in the bubble behavior of
icrosize.
In general, the characteristic frequency of the driving force

0 differs from the natural frequency of bubble oscillation 1/t0.
he time t and the driving frequency fd in the sinusoidal term in
q. (18) may be normalized by 1/f0 and f0, respectively so that

he sinusoidal term remains in the same form as cos(2πft) but
ith different nondimensional frequency f = fd/f0. Because the
ubble wall motion described by Eq. (18) is also normalized by

0 with this normalization method, but the nondimensional time
s recovered by 1/f0 in the numerical procedure (which may be
alled as two-time scale normalization (TTN) method), there is
lag time of the bubble motion with respect to the characteristic

ime of the applied ultrasound f0, which is defined as [20]:

= 1

f0
− t0 (32)

The bubble behavior under ultrasound can be described cor-
ectly with the concept of such lag time [22], which is due to
he combined effect of the surface tension and viscosity of fluid
49].
. Calcuation results and discussion

The calculated radius–time curve along with observed
esults by the light scattering method for a xenon bubble with F
n sulfuric acid solution. The thermodynamic properties employed for 85%
ulfuric acid solution are ρ = 1800 kg/m3, Cs = 1470 m/s, μ = 0.025 N s/m2,
= 0.055 N/m, kl = 0.40 W/m K, and Cp,l = 1817 J/kg K.

0 = 15 �m, driven by the ultrasonic field with a frequency
7.8 kHz and amplitude of 1.5 atm in aqueous solution of
ulfuric acid is shown in Fig. 1. With xenon data for the thermal
onductivity, the calculated radius–time curve which mimics
he alternating pattern of the observed result shows two different
tates of bubble motion. On the other hand, the Rayleigh–Plesset
quation with polytropic relation, a conventional method [47]
sed to predict the sonoluminescence phenomena, cannot
redict the two states of bubble motion as shown in Fig. 1. It
s noted that a stable sonoluminescing bubble was levitated in

spherical, 52 mm diameter (50 cm3 volume), quartz flask at
ultrasound amplitude of 1.5 atm and frequency of 37.0 kHz,
ig. 2. Calculated bubble center temperatures for the cases shown in Fig. 1.
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iven. The calculation results by our method revealed that the
low bubble expansion in response to the rarefaction phase of the
pplied ultrasound undergoes almost isothermally while the sub-
equent rapid bubble collapse proceeds nearly adiabatically. On
he other hand, considerably lower temperature as low as 100 K
s achieved at the point of the maximum bubble radius when the
ubble evolution was assumed to be proceeded by the polytropic
rocess with n = 1.3. Our estimated value of the gas temperature
t the collapse point is about 8200 K at the bubble center with the
verage value of 6000 K, which is close to the observed value of
000–7000 K by spectrum data fitted to the blackbody radiation
15]. However, the polytropic approximation provides consid-
rable underestimation of the gas temperature of 2300 K at the
ollapse point.

Because Pb dV is a perfect differential and the polytropic
elation is a point function so that the gas pressure and the tem-
erature estimated by the polytropic relation does not depend on
he process in which the bubble evolves. This is why a “process
quation” was proposed to estimate the gas pressure [44]. How-
ver, the process equation of PV = const. which was introduced

o estimate the gas pressure cannot account the thermal damping
ue to finite heat transfer through the bubble wall.

Fig. 3 shows the temperature distribution inside the bubble
round the maximum expansion phase (a) and around the col-

ig. 3. Temperature distribution (a) near the maximum expansion point and (b)
ear the collapse point for the bubble shown in Fig. 1.
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ig. 4. Calculated gas pressure depending on time for an argon bubble of

0 = 13.0 �m at PA = 1.40 atm and fd = 28.5 kHz.

apse one (b). As shown in Fig. 3a an inversion of the temperature
istribution occurs before and after the maximum expansion.
efore maximum expansion, the temperature at the bubble wall

s slightly higher than that at the center so that heat flow from liq-
id to the bubble occurs. On the other hand, after the maximum
xpansion point where thermal equilibrium prevails, heat flows
ut to the liquid, which is drastically different from the results
btained with the polytropic relation. Considerable temperature
radient is built up at the collapse point so that large amount of
eat flows into the liquid as shown in Fig. 3b.

Fig. 4 shows the calculated time rate change of the gas pres-
ure for the argon bubble of R0 = 13 �m at PA = 1.4 atm and
d = 28.5 kHz in sulfuric acid solutions. Our calculated pressure
t the collapse point is about 1020 atm, which is close to the
bserved value of 1090 atm by plasma diagnostics technique
15]. However, considerable overestimation in the gas pressure
t the collapse point results with the polytropic relation. As can
e seen in Figs. 3 and 4, the calculated time rate change of the
as temperature and pressure inside the bubble by ours are quite
ifferent from those obtained by the Rayleigh–Plesset equation
ith the polytropic relation. Same as the case of the bubbles
nder ultrasound in sulfuric acid solutions, considerable over-
stimation in the gas pressure and underestimation in the gas
emperature are provided by the polytropic relation for an oscil-
ating bubble in water. The polytropic assumption for the bubble
ehavior may be a good approximation for small-amplitude case
46].

For a bubble whose equilibrium radius is less than 10 �m,
he lagging motion of the bubble with respect to the driv-
ng ultrasound should be considered as discussed in previous
ection. Fig. 5 shows the calculated radius–time curve along
ith observed one for an air bubble of R0 = 8.5 �m, driven by
ltrasound with a frequency of 26.5 kHz and an amplitude of
.075 atm. Our radius–time curve was calculated with different

ime scales for the bubble motion t0 given in Eq. (32) and for
he applied ultrasound 1/f0 = 10−6 s so that the retarded time of
he bubble motion with respect to the driving force τ is about
.15 �s. Close agreement between our calculated curve and the
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ig. 5. Theoretical radius–time curve with relaxation time of 0.15 �s along with
bserved one for air bubble of R0 = 8.5 �m at PA = 1.075 atm and fd = 26.5 kHz
n water.

bserved one [48] can be seen. However, the curve obtained
y the Rayleigh–Plesset equation with a polytropic relation of
V1.4 = const. and without the legging time is quite different

rom the observed one; the time elapsed from the start to the
rst bubble collapse is about 16.5 �s compared to the observed
alue of 19.1 �s and the number of bouncing is 10 rather the
bserved number of 7 as shown in Fig. 6. Also the magnitude of
he maximum bubble radius at the first bounce is significantly
ess than the observed one.

Fig. 7 shows the calculated bubble radius-time curves along
ith observed one for an air bubble of R0 = 5 �m under an ultra-

ound frequency of 12.926 kHz and amplitude of 1.33 atm [21].
s shown in Fig. 7, the curves obtained by Keller–Miksis or

odified Rayleigh–Plesset equation with a relaxation time of

.396 �s mimic correctly the observed behavior of bubble in
ater. However, the maximum radius calculated without con-

idering the relaxation time is about 1.8 times larger than the

ig. 6. Calculated radius–time curve obtained from the RP equation with poly-
ropic relation along with observed one for the case shown in this figure.
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ig. 7. Radius–time curves from the RP equation without relaxation time (—)
nd KMNS (- - -) with the relaxation time of 0.39 �s for an air bubble of

0 = 5.0 �m at PA = 1.33 atm and fd = 12.926 kHz in water.

bserved one. In consequence of this, the bubble wall veloc-
ty at the collapse point, which exceeds 2000 m/s, is much larger
han the observed value of 1400 m/s [51]. For reference purpose,
napshot images of the oscillating bubble with accompanying
onoluminescence for the case shown in Fig. 7 are shown in
ig. 8. Clearly can be seen from the image near the collapse
oint (65 �s), no evaporation of water at the bubble wall where
onsiderable high temperature above the critical temperature of
ater is expected, occurs.
As shown in Fig. 9, the bubble wall acceleration near the

ollapse point for the bubble shown in Fig. 7 exceeds 1012 m/s2

o that a thermal spike due to abrupt rise and subsequent decrease
n the bubble wall acceleration appears. The thermal spike which
asts only fraction of nanosecond as shown in Fig. 9 generates

light pulse due to Bremsstrahlung [27,30]. In this case, the
emperature distribution due to the bubble wall motion after the
ash and the corresponding heat flux inside bubble are show in
ig. 10. The maximum temperature at the bubble center is about
8,000 K and the maximum heat flux at the bubble wall is as
uch as 35 TW/m2. Of course, these values become lower at a

igh frequency of 30 kHz operation as shown in Figs. 11 and 12.
n the other hand the maximum temperature estimated by the
olytropic relation with n = 1.3 is about 6700 K even though the
ubble radius at the collapse point is as small as 0.16 �m.

Fig. 11 shows the bubble radius–time curves obtained from
he direct numerical simulation (DNS) by Storey [52], poly-
ropic assumption, and our method, for a radius of 4.5 �m bubble
orced with a 1.3 atm pressure amplitude at 32.8 kHz. The cal-
ulation results by DNS and our theory with τ = 0, produced
imilar radial oscillations including the boundary motion after
he collapse. On the other hand, polytropic assumption yields
uantitatively incorrect results because the thermal damping due
o the finite heat transfer across the bubble wall cannot be taken
nto account.
Fig. 12a shows the time-dependent temperature and pressure
t the bubble wall around the collapse point and Fig. 12b shows
patial temperature and pressure distributions in the liquid layer
djacent to the bubble wall at the collapse point. As can be seen
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Fig. 8. Snapshot images of the oscillating bubble with SL shown in Fig. 2. A dark ba
[21]).

Fig. 9. Time-dependent center temperature and the bubble wall acceleration
near the collapse point for the bubble shown in Fig. 7.

Fig. 10. Temperature distribution and heat flow rate per unit volume inside the
bubble at the collapse point for the case shown in Fig. 8.
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r in the first frame is the image of gold wire of 25 �m diameter (from reference

rom Fig. 12b, the pressure value at the point where the temper-
ture is 647 K, the critical temperature of water is much greater
han the critical pressure of water, 218 atm, so that the supercriti-
al state of water is developed above T = 647 K. Below 647 K, the
ressure values are always greater than the saturation pressure
orresponding to the temperature so that no evaporation takes
lace in the liquid layer. The estimated duration of supercritical
tate of water from Fig. 12a is about 400 ps. In fact, Hua et al. [53]
oticed that high temperature and pressure exceeding the criti-
al value of water at the interface during the bubble collapse and
stimated the lifetime and spatial extent of the supercritical state
y solving the transient conduction equation in the liquid layer.
uch higher reaction rate of the hydrolysis of p-nitrophenyl

cetate by several orders of magnitude in the presence of ultra-

ound was considered to be attributed to the existence of transient
upercritical state of water during the bubble collapse [54]. The
ossibility of evaporation of liquid at the bubble wall is scarce
ecause the temperature at the interface remains the same as

ig. 11. Bubble radius–time curves by a direct numerical simulation, polytropic
ssumption and our analytical method for a 4.5 �m radius bubble driven at

A = 1.3 atm and fd = 32.8 kHz.
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Fig. 12. (a) Time-dependent bubble wall temperature and pressure around the
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ollapse point. (b) Calculated temperature and pressure distribution in the liquid
ayer adjacent to the bubble wall for the case shown in Fig. 11 at the collapse
oint.

he ambient temperature as shown in Fig. 2 except the collapse
hase when the supercritical state of water is developed.

Finally, it is noted that the peak temperature and pressure
t the collapse point turned out to be not affected by the mass
ransfer of gases through the bubble wall [55].

. Conclusion

High temperature and pressure fields resulting from the col-
apse of microsize bubbles in liquids under ultrasound, which
re responsible for the observed chemical and biological effects
f ultrasound have been estimated by a set of solutions of the
avier–Stokes equations with consideration of heat transfer

hrough the bubble wall. The calculated results of the peak tem-
erature and pressure obtained by using our analytical model are
n good agreement with the observed ones from a single sono-
uminescing gas bubble which can be levitated in a cylindrical
r spherical cell at the frequency range from 10 to 40 kHz of
ltrasound. Our analytical model also produces correct radial
otion of bubble, which is in good agreement with the result by

irect numerical simulation, and the alternating pattern of bubble
otion showing on/off sonoluminescence due to heat transfer

cross the interface in sulfuric acid solutions. In summary, our
odel presented in this study is an unique analytical one which
an predict the behavior of the gas inside the evolving bubble.
o, the analytical model used may be employed to the design of
onochemical reactors where the correct value of the parameters
elated to the cavitation intensity is required.
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48] R. Löfstedt, B.P. Barber, S.J. Putterman, Phys. Fluids A 5 (1993)
2911–2928.

49] H. Kwak, S.W. Karng, Y.P. Lee, J. Korean Phys. Soc. 46 (2005) 951–962.
50] A. Troia, D.M. Ripa, R. Spagnolo, This Paper was Presented at World

Congress of Ultrasonics 2003, Paris, Ultrason. Sonochem. 13 (2006)
278–282.

51] K.R. Weninger, B.P. Barber, S.J. Putterman, Phys. Rev. Lett. 78 (1997)
1799–1802.

52] B.D. Storey, Phys. Rev. E 64 (2001) 017301.
53] I. Hua, R.H. Hochemer, M.R. Hoffmann, J. Phys. Chem. 99 (1995)
2335–2342.
54] H. Hung, M.R. Hoffmann, J. Phys. Chem. A 103 (1999) 2734–2739.
55] K.Y. Kim, H. Kwak, Predictions of bubble behavior in sulfuric acid

solutions by a set of solutions Navier–Stokes equations, submitted for
publication.


	Temperature and pressure fields due to collapsing bubble under ultrasound
	Introduction
	Bubble dynamics
	Hydrodynamic solutions for the gas inside bubble
	Governing equations from the Navier-Stokes equations for the liquid adjacent to the bubble wall
	Prosperetti et al.s formulation
	Other approximations

	A numerical integration of equation for bubble wall motion
	Calcuation results and discussion
	Conclusion
	Acknowledgements
	References


